Orientation Interpolation in Quatemion Space Using Spherical Biarcs

نویسندگان

  • Wenping Wang
  • Barry Joe
چکیده

We consider the problem of interpolating a smooth curve to a point sequence in the unit quaternion space U. This problem has application to object orientation interpolation in computer animation , sweep surface generation in solid modeling[7, 6]. Since the unit quaternions form the unit sphere 8 3 in p;4, a simple curve scheme using spherical biarcs is presented to solve this problem. The spherical biarc is a curve on a sphere consisting of two smoothly joining circular arcs. It is shown that for any two given points and two tangents specified at the two points on the unit sphere S'3 , there always exist spherical biarcs interpolating these data and these biarcs are easy to construct. This leads to an algorithm for constructing a smooth and locally controllable circular arc spline curve to interpolate a sequence of unit quaternions in U. We also discuss how to compute in-between quaternions efficiently on the resulting spline curve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Florida State University College of Arts and Sciences a Novel Riemannian Metric for Analyzing Spherical Functions with Applications to Hardi Data

We propose a novel Riemannian framework for analyzing orientation distribution functions (ODFs), or their probability density functions (PDFs), in HARDI data sets for use in comparing, interpolating, averaging, and denoising PDFs. This is accomplished by separating shape and orientation features of PDFs, and then analyzing them separately under their own Riemannian metrics. We formulate the act...

متن کامل

C1 Hermite interpolation with spatial Pythagorean-hodograph cubic biarcs

In this paper the C Hermite interpolation problem by spatial Pythagorean-hodograph cubic biarcs is presented and a general algorithm to construct such interpolants is described. Each PH cubic segment interpolates C data at one point and they are then joined together with a C continuity at some unknown common point sharing some unknown tangent vector. Biarcs are expressed in a closed form with t...

متن کامل

HIERARCHICAL COMPUTATION OF HERMITE SPHERICAL INTERPOLANT

In this paper, we propose to extend the hierarchical bivariateHermite Interpolant to the spherical case. Let $T$ be an arbitraryspherical triangle of the unit sphere $S$ and  let $u$ be a functiondefined over the triangle $T$. For $kin mathbb{N}$, we consider aHermite spherical Interpolant problem $H_k$ defined by some datascheme $mathcal{D}_k(u)$ and which admits a unique solution $p_k$in the ...

متن کامل

Q-ball imaging.

Magnetic resonance diffusion tensor imaging (DTI) provides a powerful tool for mapping neural histoarchitecture in vivo. However, DTI can only resolve a single fiber orientation within each imaging voxel due to the constraints of the tensor model. For example, DTI cannot resolve fibers crossing, bending, or twisting within an individual voxel. Intravoxel fiber crossing can be resolved using q-s...

متن کامل

Application of Quaternion Interpolation (SLERP) to the Orientation Control of 6-Axis Articulated Robot using LabVIEW and RecurDyn

In general, the orientation interpolation of industrial robots has been done based on Euler angle system which can result in singular point (so-called Gimbal Lock). However, quaternion interpolation has the advantage of natural (specifically smooth) orientation interpolation without Gimbal Lock. This paper presents the application of quaternion interpolation, specifically Spherical Linear IntER...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015